
livingmarkup

Feb 05, 2021

Project Information

1 Installation 3

2 Contribute 5

3 Navigation 7

i

ii

livingmarkup

LivingMarkup is an PHP implementation of a LHTML parser.
It is a powerful and flexible way to build dynamic web pages.

<?php
use LivingMarkup\Factory\ProcessorFactory;

$processor = ProcessorFactory::getInstance();

$processor->addElement([
'xpath' => '//partial',
'class_name' => 'Partial\{name}'
]);

$processor->addRoutine([
'method' => 'onRender',
'execute' => 'RETURN_CALL'
]);

$processor->parseBuffer();
?>
<html lang="en">
<partial name="Alert" type="success">

This is a success alert.
</partial>
</html>

Project Information 1

livingmarkup

2 Project Information

CHAPTER 1

Installation

Get an instance of LivingMarkup up and running in less than 5 minutes.

LivingMarkup is available on Packagist.

Install with Composer:

composer require ouxsoft/livingmarkup

That’s it. You’re done! Please take the rest of the time to read our docs.

3

livingmarkup

4 Chapter 1. Installation

CHAPTER 2

Contribute

• Issue Tracker: https://github.com/ouxsoft/LivingMarkup/issues

• Source Code: https://github.com/ouxsoft/LivingMarkup

5

https://github.com/ouxsoft/LivingMarkup/issues
https://github.com/ouxsoft/LivingMarkup

livingmarkup

6 Chapter 2. Contribute

CHAPTER 3

Navigation

3.1 Routines

Routines are methods that are automatically called by the processor during run time.

During a routine call all instantiated elements featuring the routine’s method are called.

3.1.1 Prefix

It is recommended to establish a naming convention for routines that distinguish them from other methods.

Often packages choose to prefix Routine methods with the word before, on, or after followed by an explanation
of the stage of execute.

For example:

Parameter Comments
beforeLoad Execute before object data load
onLoad Execute during object data load
afterLoad Execute after object data loaded
beforeRender Execute before object render
onRender Execute during object render
afterRender Execute after object rendered

3.2 Elements

Elements are the working bees of LivingMarkup.

Elements are objects that process DOMElements.

Much of how an DOMElement is processed is deteremined by their class.

7

livingmarkup

During the object’s construction, the element receives arguments that were found in both the DOMElement’s attributes
and child arg DOMElements from Engine.

3.2.1 Element Development

New elements are easy to make. Simply create a class that extends the abstract class
\LivingMarkup\Element\AbstractElement.

Make sure to add it to the Configuration to active the element.

Example

The basic syntax of a element class is shown below.

<?php

namespace LivingMarkup\Elements;

class HelloWorld extends \LivingMarkup\Element
{

public function onRender()
{

return 'Hello, World';
}

}

3.3 Configuration

The Configuration class is responsible for the instructions that explain to the Builder how to build the LHTML
Document. These instructions can be set by modifying the config file that is loaded.

3.3.1 Config File

Configurations can be loaded from a file or created using an object. Below is an example of a config file.

Example

{
"version": 3,
"elements": [
{

"xpath": "//bitwise",
"class_name": "LivingMarkup\\Test\\Bitwise"

}
],
"routines": [
{

"method": "beforeLoad",
"description": "Execute before object data is loaded"

},

(continues on next page)

8 Chapter 3. Navigation

livingmarkup

(continued from previous page)

{
"method": "onLoad",
"description": "Execute when object data is loading"

},
{

"method": "afterLoad",
"description": "Execute after object data is loaded"

},
{

"method": "beforeRender",
"description": "Execute before object is rendered"

},
{

"method": "onRender",
"description": "Execute while object is rendering",
"execute": "RETURN_CALL"

},
{

"method": "afterRender",
"description": "Execute after object is rendered"

}
]

}

Autoloading

If a config file has been specified during construction, it will be loaded.
If a config file has not been specified the Configuration class tries to
load a config.json file if present.

If the config.json is not present, the Configuration will try

to load the | packaged config config.dist.json file.

3.3. Configuration 9

livingmarkup

Parameters

Parame-
ter

Comments

version Indicates the file structure to the Configuration for stability purposes.
elements An array containing the types of elements to load at runtime. Each type contains contain an array

with a name, a class_name, and a xpath expression.
element:*:nameDefines what the elements is named.
element:*:xpathSpecifies exactly how find DOMElements to initialize as elements. Xpath expressions are a powerful

syntax for searching within a the Document for DOMElements.
element:*:class_nameSpecifies which class to instantiate the DOMElement as. The class_name provided must refer to

a class that extends the abstract Element class. The class name may feature a {name} variable
which is automatically populated by the DOMElement’s name attribute during runtime.

routines An array containing automated method calls that will be made to all Elements during runtime. The
order of items in this array determines the order of execution.

routines:*:nameThe exact name of the method being executed.
routines:*:descriptionAn explanation of what the method is doing that indicates its order.
routines:*:executeDetermines whether the method should be ran differently. Currently, the following commands are

supported * RETURN_CALL - The output of the method will replace the DOMElement in the
DOMDocument. Is optional

markup: String containing the actual LHTML that will be parsed by the Builder. This field is typically
omitted from the config file and is instead appended to Configuration during runtime, often by
the Autoloader.

3.4 Security

3.4.1 Escaping HTML and XSS

It is the responsibility of the library client to escape HTML to avoid XSS. This library itself will not alter its input.

3.4.2 Disable Entity Loader

You may want to choose to disable external entities.

libxml_disable_entity_loader(true);

For more information, see PHP Security Injection Attacks

10 Chapter 3. Navigation

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html#xml-injection

	Installation
	Contribute
	Navigation

